Antonio Avilés (joint work with S. Todorcevic)

Universidad de Murcia AEI - Government of Spain, FEDER/ERDF (MTM2017-86182-P) Fundación Séneca - Región de Murcia (20797/PI/18)

Hejnice 2020



 $f: X \longrightarrow \mathbb{R}$  is Baire<sub>1</sub> if it is the pointwise limit of continuous functions.

 $f: X \longrightarrow \mathbb{R}$  is Baire<sub>1</sub> if it is the pointwise limit of continuous functions.

#### Definition

*K* is Rosenthal compact if  $K \subset Baire_1(X, \mathbb{R})$ .

 $f: X \longrightarrow \mathbb{R}$  is Baire<sub>1</sub> if it is the pointwise limit of continuous functions.

#### Definition

*K* is Rosenthal compact if  $K \subset Baire_1(X, \mathbb{R})$ .

• X is Polish.

 $f: X \longrightarrow \mathbb{R}$  is Baire<sub>1</sub> if it is the pointwise limit of continuous functions.

#### Definition

*K* is Rosenthal compact if  $K \subset Baire_1(X, \mathbb{R})$ .

- X is Polish.
- We take the pointwise topology.

 $f: X \longrightarrow \mathbb{R}$  is Baire<sub>1</sub> if it is the pointwise limit of continuous functions.

#### Definition

*K* is Rosenthal compact if  $K \subset Baire_1(X,\mathbb{R})$ .

- X is Polish.
- We take the pointwise topology.

Arbitrary sets  $\leftrightarrow$  Analytic sets

Arbitrary compacta  $\leftrightarrow$  Separable Rosenthal compacta

 Rosenthal compact spaces are Fréchet-Urysohn (Bourgain-Fremlin-Talagrand)

 Rosenthal compact spaces are Fréchet-Urysohn (Bourgain-Fremlin-Talagrand) in a Borel way (Debs)

#### "Perfect set theorems":

• K is not metrizable  $\iff K \supset C_1$  or  $K \supset C_2$  or  $K \supset C_3$ .

- K is not metrizable  $\iff K \supset C_1$  or  $K \supset C_2$  or  $K \supset C_3$ .
- K is not hereditarily separable  $\iff K \supset C_2$  or  $K \supset C_3$ .

- K is not metrizable  $\iff K \supset C_1$  or  $K \supset C_2$  or  $K \supset C_3$ .
- K is not hereditarily separable  $\iff K \supset C_2$  or  $K \supset C_3$ .
- K is not scattered  $\iff K \supset C_0$  or  $K \supset C_1$  or  $K \supset C_2$ .

- K is not metrizable  $\iff K \supset C_1$  or  $K \supset C_2$  or  $K \supset C_3$ .
- K is not hereditarily separable  $\iff K \supset C_2$  or  $K \supset C_3$ .
- K is not scattered  $\iff K \supset C_0$  or  $K \supset C_1$  or  $K \supset C_2$ .
- K is not a continuous image of a 4-to-1 preimage of a metric space  $\iff K \supset C_1^4$  or  $\cdots$  or  $K \supset C_8^4$ .

#### "Perfect set theorems":

- K is not metrizable  $\iff K \supset C_1$  or  $K \supset C_2$  or  $K \supset C_3$ .
- K is not hereditarily separable  $\iff K \supset C_2$  or  $K \supset C_3$ .
- K is not scattered  $\iff K \supset C_0$  or  $K \supset C_1$  or  $K \supset C_2$ .
- K is not a continuous image of a 4-to-1 preimage of a metric space  $\iff K \supset C_1^4$  or  $\cdots$  or  $K \supset C_8^4$ .

#### Problems:

#### "Perfect set theorems":

- K is not metrizable  $\iff K \supset C_1$  or  $K \supset C_2$  or  $K \supset C_3$ .
- K is not hereditarily separable  $\iff K \supset C_2$  or  $K \supset C_3$ .
- K is not scattered  $\iff K \supset C_0$  or  $K \supset C_1$  or  $K \supset C_2$ .
- K is not a continuous image of a 4-to-1 preimage of a metric space  $\iff K \supset C_1^4$  or  $\cdots$  or  $K \supset C_8^4$ .

#### Problems:

• K is not fragmentable  $\iff K \supset C_1, K \supset C_1^2, \dots$ ?



#### "Perfect set theorems":

- K is not metrizable  $\iff K \supset C_1$  or  $K \supset C_2$  or  $K \supset C_3$ .
- K is not hereditarily separable  $\iff K \supset C_2$  or  $K \supset C_3$ .
- K is not scattered  $\iff K \supset C_0$  or  $K \supset C_1$  or  $K \supset C_2$ .
- K is not a continuous image of a 4-to-1 preimage of a metric space  $\iff K \supset C_1^4$  or  $\cdots$  or  $K \supset C_8^4$ .

#### Problems:

• K is not fragmentable  $\iff K \supset C_1, \ K \supset C_1^2, \dots$ ?

*d* fragments *K* if for every  $L \subset K$  there is a point of continuity  $L \longrightarrow (L, d)$ .



#### "Perfect set theorems":

- K is not metrizable  $\iff K \supset C_1$  or  $K \supset C_2$  or  $K \supset C_3$ .
- K is not hereditarily separable  $\iff K \supset C_2$  or  $K \supset C_3$ .
- K is not scattered  $\iff K \supset C_0$  or  $K \supset C_1$  or  $K \supset C_2$ .
- K is not a continuous image of a 4-to-1 preimage of a metric space  $\iff K \supset C_1^4$  or  $\cdots$  or  $K \supset C_8^4$ .

#### Problems:

- K is not fragmentable  $\iff K \supset C_1, \ K \supset C_1^2, \dots$ ?
- K is something  $\iff K \supset C_1$ ?

*d* fragments *K* if for every  $L \subset K$  there is a point of continuity  $L \longrightarrow (L, d)$ .



### Localized perfect set theorem:

• If x is not  $G_{\delta}$ , then  $x \in C_1 \subset K$ .

### Localized perfect set theorem:

- If x is not  $G_{\delta}$ , then  $x \in C_1 \subset K$ .
- Problem: A multidimensional version?
  - If x is not "double  $G_{\delta}$ ", then  $x \in C_1^2 \subset K$  ??

### Localized perfect set theorem:

- If x is not  $G_{\delta}$ , then  $x \in C_1 \subset K$ .
- Problem: A multidimensional version?
  - If x is not "double  $G_{\delta}$ ", then  $x \in C_1^2 \subset K$ ??

### "Double $G_{\delta}$ -point"

 $\exists \mathscr{U}$  countable family of open sets

$$\forall y \neq z \neq x \ \exists W_x, W_y, W_z \in \mathscr{U} \ W_x \cap W_y \cap W_z = \emptyset.$$

## The LUR problem

### LUR problem

If K is separable Rosenthal compact, does C(K) have a LUR renorming?

## The LUR problem

### LUR problem

If K is separable Rosenthal compact, does C(K) have a LUR renorming?

#### A more set-theoretic version of this problem

If  $\mathscr B$  is a Borel subalgebra of  $\mathscr P(\omega)$  that does not contain  $\mathscr P(\omega)$ , is  $\mathscr B$   $\sigma$ -scattered in the pointwise topology?

Partial answer (Haydon, Moltó, Orihuela)

Yes, if K is made of functions with countably many discontinuities.

### Partial answer (Haydon, Moltó, Orihuela)

Yes, if K is made of functions with countably many discontinuities.

 $CD \subset R$ 

Separable compact spaces:

R made of Baire<sub>1</sub> functions on Polish space

*CD* made of functions with  $\aleph_0$  discontinuities

### Partial answer (Haydon, Moltó, Orihuela)

Yes, if K is made of functions with countably many discontinuities.

$$CD \subset RK \subset R$$

Separable compact spaces:

- R made of Baire<sub>1</sub> functions on Polish space
- RK made of Baire<sub>1</sub> functions on compact metric
- *CD* made of functions with  $\aleph_0$  discontinuities

### Partial answer (Haydon, Moltó, Orihuela)

Yes, if K is made of functions with countably many discontinuities.

$$CD \subset RK \subset R$$

Separable compact spaces:

R made of Baire<sub>1</sub> functions on Polish space

RK made of Baire<sub>1</sub> functions on compact metric

*CD* made of functions with  $\aleph_0$  discontinuities

Pol, Marciszewski-Pol:  $RK \neq R$  A.-Todorcevic:  $CD \neq RK$ 



## $CD \neq R$

### Proposition

If K is CD, then K is a Corson-to-one preimage of a metric space.

# $CD \neq R$

### Proposition

If K is CD, then K is a Corson-to-one preimage of a metric space.

### Proof

$$K \subset \{f: X \longrightarrow \mathbb{R}\}$$

# $CD \neq R$

### Proposition

If K is CD, then K is a Corson-to-one preimage of a metric space.

#### Proof

 $K \subset \{f: X \longrightarrow \mathbb{R}\}$ 

 $D \subset X$  countabe dense, and  $r: K \longrightarrow \mathbb{R}^D$  the restriction.

Example: Take K the space of all functions  $f:[0,1]^2 \longrightarrow \{0,1\}$  lexicographically non-decreasing.

# A problem

#### Problem

Is every separable Rosenthal compactum a continuous image of a *CD* space?

## A problem

#### Problem

Is every separable Rosenthal compactum a continuous image of a *CD* space?

We know that this is the case for (separable supplementations of) lexicographically increasing functions  $[0,1]^n \longrightarrow \mathbb{R}$ .... but what about larger ordinals?